Crowd Anomaly Detection for Automated Video Surveillance
نویسندگان
چکیده
Video-based crowd behaviour detection aims at tackling challenging problems such as automating and identifying changing crowd behaviours under complex real life situations. In this paper, real-time crowd anomaly detection algorithms have been investigated. Based on the spatio-temporal video volume concept, an innovative spatio-temporal texture model has been proposed in this research for its rich crowd pattern characteristics. Through extracting and integrating those crowd textures from surveillance recordings, a redundancy wavelet transformation-based feature space can be deployed for behavioural template matching. Experiment shows that the abnormality appearing in crowd scenes can be identified in a real-time fashion by the devised method. This new approach is envisaged to facilitate a wide spectrum of crowd analysis applications through automating current Closed-Circuit Television (CCTV)-based surveillance systems.
منابع مشابه
Spatio-temporal texture modelling for real-time crowd anomaly detection
With the rapidly increasing demands from surveillance and security industries, crowd behaviour analysis has become one of the hotly pursued video event detection frontiers within the computer vision arena in recent years. This research has investigated innovative crowd behaviour detection approaches based on statistical crowd features extracted from video footages. In this paper, a new crowd vi...
متن کاملPanic Detection in Human Crowds using Sparse Coding
Recently, the surveillance of human activities has drawn a lot of attention from the research community and the camera based surveillance is being tried with the aid of computers. Surveillance is required to detect abnormal or unwanted activities. Such abnormal activities are very infrequent as compared to regular activities. At present, surveillance is done manually, where the job of operators...
متن کاملHierarchical crowd analysis and anomaly detection
Objective: This work proposes a novel approach to model the spatiotemporal distribution of crowd motions and detect anomalous events. Methods: We first learn the regions of interest (ROIs) which inform the behavioral patterns by trajectory analysis with Hierarchical Dirichlet Processes (HDP), so that the main trends of crowd motions can be modeled. Based on the ROIs, we then build a series of h...
متن کاملAbnormal Crowd Motion Detection with Hidden Markov Model
stations,etc. With the increasing demand of surveillance of various human activities, an efficient automated surveillance system to detect anomalies has become important. There is a survey on visual surveillance in [1], and a lot of problems have not resolved in surveillance applications nowadays as discussed in some papers [2]. Crowd feature extraction and crowd modeling are two important appr...
متن کاملDensity aware anomaly detection in crowded scenes
Coherent nature of crowd movement allows representing the crowd motion using sparse features. However, surveillance videos recorded at different periods of time are likely to have different crowd densities and motion characteristics. These varying scene properties necessitate use of different models for an effective representation of behaviour at different periods. In this study, a density awar...
متن کامل